Using Data Augmentation Based Reinforcement Learning for Daily Stock Trading
نویسندگان
چکیده
منابع مشابه
Reinforcement Learning in Online Stock Trading Systems
Applications of Machine Learning (ML) to stock market analysis include Portfolio Optimization, Investment Strategy Determination, and Market Risk Analysis. This paper focuses on the problem of Investment Strategy Determination through the use of reinforcement learning techniques. Four techniques, two based on Recurrent Reinforcement Learning (RLL) and two based on Q-learning, were utilized. Q-l...
متن کاملAdaptive stock trading with dynamic asset allocation using reinforcement learning
Stock trading is an important decision-making problem that involves both stock selection and asset management. Though many promising results have been reported for predicting prices, selecting stocks, and managing assets using machine-learning techniques, considering all of them is challenging because of their complexity. In this paper, we present a new stock trading method that incorporates dy...
متن کاملA Multiagent Approach to Q-Learning for Daily Stock Trading
The portfolio management for trading in the stock market poses a challenging stochastic control problem of significant commercial interests to finance industry. To date, many researchers have proposed various methods to build an intelligent portfolio management system that can recommend financial decisions for daily stock trading. Many promising results have been reported from the supervised le...
متن کاملReinforcement Learning-based Energy Trading for Microgrids
With the time-varying renewable energy generation and power demand, microgrids (MGs) exchange energy in smart grids to reduce their dependence on power plants. In this paper, we formulate an MG energy trading game, in which each MG trades energy according to the predicted renewable energy generation and local energy demand, the current battery level, and the energy trading history. The Nash equ...
متن کاملReinforcement Learning for Trading
We propose to train trading systems by optimizing financial objective functions via reinforcement learning. The performance functions that we consider are profit or wealth, the Sharpe ratio and our recently proposed differential Sharpe ratio for online learning. In Moody & Wu (1997), we presented empirical results that demonstrate the advantages of reinforcement learning relative to supervised ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2020
ISSN: 2079-9292
DOI: 10.3390/electronics9091384